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Abstract—CPU scheduling is a core component in operating 

systems, in which a scheduling algorithm is used to determine the 

process to be executed next in a queue. The priority scheduling 

algorithm is an example of such algorithm that uses priority queues 

to determine the next executed process. As opposed to the 

traditional use of a linear priority queue for this algorithm, this 

paper proposes the use of min-heaps, a type of priority queue 

implemented as a binary tree. With the utilization of binary trees, 

the time complexity of insertion and deletion to the queue can be 

heavily reduced from linear time to logarithmic time, thus 

maximizing CPU performance. 

 

Keywords—Binary Trees, CPU Scheduling, Data Structures, 

Heaps, Priority Queues  

 

I.   INTRODUCTION 

 
 

Figure 1.1 An illustrated overview of CPU scheduling. 
Source: [3] 

 

In the realm of operating systems, the efficient allocation of 

CPU resources is vital to ensure optimal system performance. 

The CPU, following its name, is the central location for 

executing every process given by the operating system. 

However, its ability to handle tasks concurrently is limited by 

the number of physical cores it possesses.  

Despite this limitation, however, in reality the usual amount 

of processes needing to be executed at a certain moment far 

exceeds the capacity that the CPU can handle. Therefore, to 

counteract this problem, the operating system implements what 

is called process scheduling to determine which processes 

should be executed first. 

Process scheduling refers to the mechanism through which 

the operating system manages the execution of multiple 

processes. When numerous processes are queueing for CPU 

time, the scheduler determines the order in which these 

processes are executed, aiming to maximize CPU utilization, 

minimize response time, and enhance overall system 

throughput. 

At its core, process scheduling involves various algorithms 

that dictate how the CPU selects the next process to execute 

from the ready queue. One of these algorithms, aptly called 

priority scheduling, operates on the principle of assigning 

priorities to different processes based on specific criteria. 

Processes with higher priority are granted access to the CPU 

before those with lower priority.  

These processes are stored in a data structure called priority 

queues, where the processes in front of the queue gets executed 

first, and when more processes get added, they are inserted to 

the back of the queue. Processes with higher priority will be 

pushed front to its appropriate location in the queue by the 

operating system. 

 
Figure 1.2 A traditional linear priority queue. These data structures suffer 

from O(n) insertion time. 

Source: [4] 

 

Traditionally, priority queues have been implemented using 

linear data structures such as linked lists or arrays. However, 

these structures suffer from limitations in terms of efficiency 

and scalability. As the number of processes increases, searching 

for the highest-priority process becomes computationally 

expensive, hindering overall system performance. 

To address these limitations, this paper proposes the 
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utilization of binary trees as heaps in the implementation of the 

priority scheduling algorithm. Heaps offer a compelling 

alternative due to their inherent properties: they guarantee 

efficient insertion, deletion, and retrieval of the highest-priority 

element, all with a logarithmic time complexity. This 

significantly improves the efficiency of the scheduling process, 

particularly for large and dynamic workloads. 

 

 
 

Figure 1.3 The heap data structure improves on linear data structures by 

having O(log n) time operations. 

Source: [5] 

 

II.  THEORETICAL FRAMEWORK 

A. Trees 

In graph theory, trees represent a specific class of graphs 

characterized by unique properties that make them invaluable 

for modeling and analyzing various real-world phenomena.  

The concept of a tree is inherently intuitive. It evokes images 

of branching structures, with a single root node connected to 

multiple child nodes, which can further branch out to form 

subsequent levels. This hierarchical organization allows for 

efficient traversal and navigation, making trees ideal for 

representing hierarchical relationships and data structures. 

Formalizing the intuitive notion of a tree requires precise 

mathematical language. A tree can be defined as a connected, 

acyclic, and undirected graph [1]. This definition captures 

several key properties: 

 

1. Connected: All nodes in the tree are reachable from every 

other node via a sequence of edges. This interconnectedness 

ensures that the tree functions as a single cohesive unit. 

 

2. Acyclic: The tree does not contain any cycles. This means 

that traversing the edges in any direction will not lead you back 

to the same node you started from. Acyclicity prevents infinite 

loops and guarantees a well-defined structure. 

 

3. Undirected: The edges in a tree have no inherent direction. 

This means that the relationship between nodes is symmetrical, 

and you can traverse the edges in either direction without 

changing the meaning of the connection. 

 

These three conditions are sufficient to characterize a 

mathematical tree. Figure 2.1 illustrates the distinction between 

trees and regular graphs (non-trees). 

 

 
Figure 2.1 Illustration of trees and non-trees 

Source: [1] 

 

Graphs G1 and G2 in Figure 2.1 fit the criteria of being 

connected, acyclic, and undirected, and therefore can be 

considered trees. Graph G3 cannot be classified as a tree, since 

there exists a circuit a-b-e-d-a in the graph, violating the acyclic 

criteria of trees. Graph G4 is not a tree either, since it consists of 

two unconnected graphs. 

The distinction between trees and graphs consist purely of the 

three criteria previously mentioned. In practice, however, it is 

much more common for a different type of tree to be used 

instead. These trees are called rooted trees, and applications of 

trees in various fields see far more use of this type of tree instead 

of the mathematical tree described above. 

 

B. Rooted Trees 

Rooted trees are a specific subclass of trees characterized by 

a unique root node. This root serves as the starting point for 

navigating the entire tree structure.  

Unlike other trees, where all nodes are treated equally, rooted 

trees establish a clear hierarchy and directionality. This inherent 

organization facilitates efficient searching, data retrieval, and 

manipulation, making them invaluable tools for representing 

complex systems and data sets. 

Formally, a rooted tree can be defined as a connected, acyclic, 

and directed graph with the following properties: 

 

1. Connected: All nodes in the tree are reachable from every 

other node via a sequence of edges. This interconnectedness 

ensures that the tree functions as a single cohesive unit. 

 

2. Acyclic: The tree does not contain any cycles. This means 

that traversing the edges in any direction will not lead you back 

to the same node you started from. Acyclicity prevents infinite 

loops and guarantees a well-defined structure. 

 

3. Directed: Each edge in the tree has a specific direction, 

pointing from a parent node to a child node. This directionality 

establishes a clear hierarchy and allows for efficient navigation 

through the tree structure. 

 

4. Unique Root: There exists a single node, designated as the 

root, with no incoming edges. This node serves as the starting 

point for traversing the entire tree. 

 

With the addition of direction and hierarchy in rooted trees, 

several new terminologies are introduced to describe trees, the 

nodes inside trees, and relations between nodes inside the tree: 
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Parent: A node connected to a child node by a single directed 

edge. 

Child: A node connected to a parent node by a single directed 

edge. 

Siblings: Nodes that share the same parent node. 

Root: The node at the topmost of the tree with no parent node. 

Degree: The number of outgoing edges connected to a node. 

Level: The depth of a node in the tree, with the root being at 

level 0. 

Subtree: A rooted tree formed by a node and all its 

descendants. 

Depth: The length of the longest path from a node to the root 

node. 

 
Figure 2.2 Illustration of a rooted tree, with node (1) as its root, and the 

subtrees (2) and (3) as its children. 

Source: [2] 

 

With a wide range of applications for the rooted tree data 

structure, many seek to invent further derivations of this 

concept, with some seeing even more uses in various problems 

spanning all sorts of fields. 

One such derivation is the N-ary tree, where each node can 

only have a maximum of N children, however having less 

children is still allowed. While this type of tree can still see 

various use cases, by far the most significant role of the N-ary 

tree in the realm of data structures is not the N-ary tree itself, but 

yet another derivation of the N-ary tree, also known as the 

binary tree. 

 
Figure 2.3 The binary tree, one of the most important data structures in 

computer science. 

Source: [6] 

 

 

The binary tree is a special type of N-ary tree where each node 

can have a maximum of two children. While this choice of 

restriction seems oddly arbitrary, the binary tree is a structure 

that surprisingly has an extraordinary amount of applications, 

especially in the computer science field. Some of its main uses 

include, but not limited to: binary search trees (BSTs) for 

efficient storing of sorted data, Huffman coding for data 

compression, and the main topic of this paper, the binary heap. 

 

C. Binary Heaps 

 
Figure 2.4 Illustration of a max-heap 

Source: [7] 

 

A binary heap is a specific kind of binary tree that satisfies 

two conditions [7]: 

1. The binary tree is nearly complete, which means empty 

nodes are only in the lowest layer, and the insertion is 

always to the leftmost empty slot. 

2. Every node in the tree is always (1) less than, or (2) 

greater than both of its children. A heap that satisfies 

condition (1) is called a min-heap, while a heap that 

satisfies condition (2) is called a max-heap. 

Unlike other tree data structures, the heap doesn’t support 

searching or random deletion, and its main operations are delete 

root and insertion, making it quite similar to the queue. 

To insert into a node into the heap, we first insert it to the 

leftmost node in the bottom layer, and “bubble up” the node to 

its correct position. To delete the root from the tree, we first 

swap the root with the last node in the lowest layer, delete the 

last node, and then the current root (which was previously the 

last node) is “bubbled down” to its correct position. 

 
 

Figure 2.5 Time complexity comparison of ordered array versus heaps 

Source: [7] 
 

This makes the steps in insertion and deletion always less than 

or equal to the root height (log n). Another unique characteristic 

of the heap is that the root is always either the maximum or the 

minimum value of the entire tree. If we imagine the numbers 

stored in a heap as a “priority value”, then the root node will 

always store the node with maximum priority. These two 

characteristics of the heap is the reason why it is an excellent 

choice to be used as a priority queue. 
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D. CPU Scheduling 

CPU scheduling is a pivotal aspect of operating systems, 

playing a fundamental role in optimizing the utilization of the 

CPU and enhancing overall system performance. It 

encompasses the methodology by which the system selects and 

allocates available CPU resources to various processes. Through 

the intricate orchestration of competing demands and priorities 

among multiple processes, CPU scheduling seeks to achieve 

optimal throughput, minimize response times, and ensure fair 

access to system resources, thereby contributing significantly to 

the seamless functioning of computing systems. 

 

 
Figure 2.6 An illustration of the priority scheduling algorithm 

Source: [8] 
 

The choice of which process gets to be executed next is 

usually decided by a CPU scheduling algorithm, of which there 

are many with their own benefits and downfalls. Some of the 

common scheduling algorithms include [3]: 

1. First Come First Served (FCFS): All processes are 

treated equally, and the earliest-arriving process is 

always next to be executed. 

2. Shortest Job First (SJF): The next executed process is 

the one with the shortest execution time, therefore 

minimizing average wait times and maximizing 

processes finished per second. 

3. Priority Scheduling: Each process is given a priority 

value, and the lower-priority processes get pushed to the 

front of the queue. 

4. Round Robin (RR): A pre-emptive algorithm where each 

process gets executed for a certain amount of time, and if 

it is not finished yet after that the duration has passed, it 

will be dequeued and then pushed back to the tail of the 

queue to be finished later. 

 

These scheduling algorithms can be classified into non-

preemptive and preemptive algorithms. Non-preemptive 

algorithms are ones that require an executing process to be fully 

finished before moving on to the next process, while preemptive 

algorithms can partially execute a process and move to the next 

process, finishing the previous one at a later time.  

The round robin algorithm is an example of a preemptive 

algorithm, while the rest that has been mentioned fall under the 

non-preemptive category. 

 

III.   METHODOLOGY 

A. Limitations 

With the theoretical frameworks of a binary heap and CPU 

scheduling established, this paper will now attempt to simulate 

CPU scheduling in Python. Simulating the inner workings of a 

CPU and the operating system is no easy task, therefore the 

method of simulation going forward will follow these few 

assumptions: 

1. The simulated system is a uniprocessor system, therefore 

all processes will be queued and executed by the single 

processor. 

2. The simulation will be non-dynamic, which means it 

cannot simulate processes queueing in and the process 

being executed simultaneously. Instead, the simulation 

will be divided into two phases, the queueing in phase, 

and the execution phase. 

3. The simulation will only simulate non-preemptive 

algorithms, therefore each process will have to be fully 

completed before the CPU executes the next process in 

queue. 

With these assumptions applied, the result of this paper might 

not reflect the results of real CPU scheduling, but it would still 

bring into light the benefits of the heap-based data structure and 

an overview of its effects on optimizing the scheduling process. 

 

B. Tools 

The tools that will be used for this simulation include: 

1. Python 3.10 

2. The heapq built-in library in Python for heap queue 

operations 

3. Jupyter Notebook, pandas, and matplotlib for data 

analysis and visualization 

 

C. The Process Class 

The main function of the proposed program is to simulate the 

sorting of processes in the scheduling queue. Therefore, a 

Process class needs to be defined first. This process class will 

serve as the main element type that will be inserted and sorted 

inside the queue. Figure 3.1 shows the structure of the Process 

class that will be used in the program. 

 

 
 

Figure 3.1 The Process class that represents the processes to be executed by 

the CPU 

Source: Personal documentation 

 

The Process class, upon initialization, will be given a process 

name (for identification purposes only), a priority value (lower 

priority processes will be executed first by the CPU, and a burst 
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time (the time it takes the CPU to execute the process). An 

arrival time will also be automatically initialized to 0, but will 

later be replaced with the time the process arrives in the 

scheduling queue. 

 

D. The Priority Queue 

Aside from needing a Process class, the program obviously 

also needs a Priority Queue class to store and sort the processes 

for execution. In this simulation, we will be implementing both 

the heap-based priority queue and the array-based priority 

queue. This is such that we can compare the efficiencies of both 

implementations. 

For the implementation of the heap-based priority queue, we 

will be utilizing the built-in heapq library with pre-made binary 

heap operations. Every implementation of a min-heap is 

essentially the same no matter the context, and since in this 

implementation we are more concerned with the benefits of a 

min-heap implementation in CPU scheduling instead of the min-

heap itself, a manually-made heap data structure is not required. 

 

 
(a) 

 

 
(b) 

Figure 3.2 (a) The Heap-based Priority Queue, (b) The Array-Based Priority 

Queue 
Source: Personal documentation 

 

Figure 3.2 shows the source code for both priority queue 

implementations. These implementations are functionally the 

same, behaving as a data structure where deletion is always from 

the front of the queue, and insertion starts from the back and then 

shifted to its appropriate location based on priority. 

The main difference between both structures are the 

algorithms used to execute said operations. In the heap-based 

implementation, inserting to the correct position is always in 

O(log n) time, since the maximum amount of swaps required is 

the height of the binary tree. The array-based implementation, 

in contrast, might have to swap with every element in the queue 

in the worst-case scenario, therefore having O(n) insertion time. 

 

E. The CPU Scheduling Simulator 

With the needed data types and data structures already 

implemented, we are now ready to implement the CPU 

scheduling program. A brief overview of the flow of the 

program is as follows: 

1. The inner program will simulate the CPU Priority 

Scheduling Algorithm for both the heap-based and array-

based priority queue, for a finite N amount of processes. 

2. The outer program receives a number Nmin, Nmax, and K, 

and for each value Ni + K in the range [Nmin, Nmax] 

(inclusive), the outer program will run the inner program 

with N = Ni amount of processes. 

3. For each iteration of the inner program, the result is saved 

into a .csv file. 

Further details of the program flow as well as the source code 

of the program is as follows: 

 

 
Figure 3.3 Program initialization 

Source: Personal documentation 

 

1. The program will first set a max priority value, Nmax, and 

the filename to store the results. The file is then opened, 

and every line of code after this is executed inside the 

with block. 

 

 
Figure 3.4 Starting the loop 

Source: Personal documentation 

 

2. The outer program starts a for loop for each Ni + K in the 

range [Nmin, Nmax]. In the example in Figure 3.4, Nmin = 

5000, and K = 5000. 

3. The inner program starts by initializing a list of N 

processes, and a data dictionary that will be used to store 

time values such as arrival time. 

4. The start time of the iteration is stored in the start 

variable, and the priority queue is initialized. 

 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

 
 

 
Figure 3.5 The process of filling the queue, and then emptying the queue 

Source: Personal documentation 

 

5. Each process in the processes list will now be inserted to 

the priority queue. This is the main section that is affected 

by the choice of the priority queue data structure. 

6. After every process has been inserted to the queue, the 

CPU will “execute” each process, starting with the 

highest priority process, until the queue is empty. In the 

process, it will keep track of the total burst time and 

waiting time, for calculations later. 

 

 
Figure 3.6 Ending the iteration and calculating results 

Source: Personal documentation 

 

7. After steps 5 and 6 are finished, the simulation for the 

specific iteration is done, the statistics of CPU 

performance is calculated, and the results are saved to the 

.csv file. 

8. The program then loops back to step 4, starting another 

iteration. 

 

IV.   RESULTS AND ANALYSIS 

We will begin the experimentation process by defining the 

case studies that will be experimented and analyzed in this 

paper: 

1. Brute-forcing N Values 

2. CPU Scheduling Performance 

In the first case study, we are only concerned with the time 

taken for the simulator to queue and execute N processes, 

therefore CPU-specific values such as burst time, throughput, 

etc. will be ignored. In the other case studies, however, we will 

be further analyzing how the algorithm effects these CPU-

specific values. 

 

A. Brute-forcing N Values 

In this case study, we will brute force N values as high as 

possible and analyze the times taken for both priority queue 

implementations. Because we are only concerned with the speed 

of the simulation, the only variable we will be analyzing is the 

total time taken to queue and execute N processes. 

 

 
Figure 4.1 Terminal output of program while running 

Source: Personal documentation 

Figure 4.1 shows the output of the program to the terminal 

during execution. After one iteration is finished, the N value of 

the iteration and the total time taken for the iteration (in seconds) 

is displayed. 

 

 
(a) 
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(b) 

 

Figure 4.2 Terminal output results for higher N values, (a) Results for the 
array-based priority queue implementation, (b) Results for the heap-based 

priority queue implementation 

 

Figure 4.2 shows the simulation results for higher N values. 

From first glance, it is glaringly obvious how high the array-

based priority queue spikes in execution time for higher N 

values. Indeed, by plotting the execution time for both 

implementations in a line graph, we can see the astronomical 

rise of the array-based simulation. 

 

  
Figure 4.3 The rise of execution time for the array-based simulation 

Source: Personal documentation 

 

Figure 4.3 shows the graph of total execution time in respect 

to N processes for both simulations. How to interpret this graph 

is: If the CPU has to queue and execute around 12,000 processes, 

the array-based simulation would finish executing all processes 

in around 15 seconds, while the heap-based simulation would 

finish in near 0 seconds. 

A first thought might be that, while there’s an obvious spike 

in execution time for the array-based simulation, the difference 

seems negligible, only differing about 20 seconds However, the 

graph in Figure 4.3 is not the full picture, or more precisely, it’s 

only 37.5% of the full picture. 

 

 
Figure 4.4 The full plotted graph of the experiment 

Source: Personal documentation 

 

Figure 4.4 shows the plotting data for the entire result of both 

simulations. As you can see, the array graph spikes so high up 

in seconds resulting in the y-axis being so stretched out in scale, 

thus causing the heap graph to look flat in comparison.  

The author has chosen to show the incomplete graph first to 

showcase that both graphs are indeed increasing, but for much 

bigger N sizes, the array-based priority queue spikes much 

quicker in execution time than the heap-based queue. 

 

B. CPU Scheduling Performance 

In this section, we will be analyzing how a change from a 

linear priority queue to a binary heap priority queue affects CPU 

scheduling performance. There are many criteria to dictate the 

quality of a CPU scheduler, but the ones of interest to us in this 

simulation are as follows: 

1. CPU Utilization: The percentage of time where the CPU 

is executing processes. A CPU is said to have 100% 

utilization if it is executing a process in every single 

moment. 

2. Throughput: The amount of processes being finished 

every second. 

3. Average Waiting Time: The average time a process has 

to wait in queue. That is, for each process, the waiting 

time is the duration from which it enters the queue, to 

when it is finally executed by the CPU. 

In the previous section we have ignored these criteria as well 

as other units such as burst rate, which before we have initialized 

as 0 to make computation easier. However, we will be 

introducing burst times to each process in this section, therefore 

a process will not be finished in an instant, it will take exactly B 

seconds to finish once it has been started executing by the CPU, 

where B is the burst time of that process 

With burst times being introduced, computation times will 

increase, since each process are not finished instantly. 

Therefore, for this experiment, we have decreased Nmin to 1000, 

Nmax to 30000, and K to 1000. 
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(a) 

 

 
(b) 

Figure 4.5 The new format of terminal output, with added values 

Source: Personal documentation 

 

 
Figure 4.6 The new execution time from adding burst times to processes 

Source: Personal documentation 

 

With burst times now being implemented, total execution 

time have increased a significant amount, as seen on Figure 4.6. 

With this newly modified simulator, though, we are able to 

extract more information about CPU performance. 

 

 
Figure 4.7 CPU Utilization Graph 

Source: Personal documentation 
 

CPU utilization refers to the ratio of time where the CPU is 

executing processes to the total recorded time. If a CPU has near 

100% utilization, it means that it is almost never idle and is 

executing processes at any given moment. 

In this simulation, all processes need to be already in the 

queue before the CPU starts executing them. In the case of the 

heap-based simulation, it finishes the queue insertion part 

almost instantly, and therefore has near 100% CPU utilization. 

The array-based simulation, however, is already at 80% 

utilization even at N = 1000 processes queueing. This number 

rapidly declines until going under 20% at around 20,000 

processes. 

The rapid decline in utilization is because the array-based 

simulation spends a very long time inserting processes into the 

queue. At N = 20,000 processes, the CPU is almost 80% idle at 

any given moment, simply waiting for the queue to be finished 

sorting. 

 

 
Figure 4.8 CPU Throughput Graph 

Source: Personal documentation 

 

CPU throughput refers to the amount of processes being 

finished every second (processes / sec). If a CPU has high 

throughput, it means that it is has rapid speed in finishing 

processes. 

Using our simulation, there shouldn’t be much difference 

between execution speed between both array-queue and heap-

queue, since deletion in the queue is very fast for both.  

What makes the array simulation steadily declining, though, 
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is simply attributed to the extended time inserting into the queue. 

When processes are being inserted to the queue, the CPU is idle 

and therefore not finishing any tasks. This is why the graph for 

throughput follow a similar decline as with the CPU utilization 

graph. 

 

 
Figure 4.9 Average Waiting Time Graph 

Source: Personal documentation 

 

For the last scheduling criteria, we have average waiting time. 

The waiting time of a process refers to the duration it has to wait 

in the queue before being executed. If a scheduler has low 

average waiting times, it means that a process usually gets 

executed very quickly after entering the queue.  

This graph almost looks like an inverse of the two graphs 

previously discussed, and the reasoning for this is pretty much 

the same. Because the insertion phase takes very long in the 

array-based simulation, the execution phase starts even longer 

as well, thus for the processes in the queue, a lot of time is spent 

simply waiting for the insertion phase to finish before actual 

execution occurs. 

 

V.   CONCLUSION 

From the results of the CPU scheduling simulator, it is 

evidently clear how using binary trees instead of linear arrays as 

priority queues significantly improve the efficiency of process 

scheduling. This case study shows a classic example of the vast 

difference a simple data structure change can make to a certain 

process. 

This study has shown that the concept of the mathematical 

tree in discrete mathematics, while simple, can bring huge 

benefits to real life problems. A data structure for a process 

scheduling program is simply one of many. Therefore, the 

author kindly invites the reader to also find interesting and 

innovative applications of discrete mathematics concepts in 

other problems, and write a paper of analysis discussing it, 

inviting others to do the same. 

As for the technicalities of this experiment, the author 

recognizes that it is far from perfect, and has large rooms for 

improvement. An example of imperfection in this 

implementation is the huge distinction of the simulated CPU to 

real-life CPUs. If given opportunities in the future, the author 

would like to improve this experiment to better reflect and 

simulate the real-life problem. 

 

 

VI.   APPENDIX 

The complete source code for this project can be found at this 

repository: https://github.com/trimonuter/CPU-Sim 

 

 

VII.   ACKNOWLEDGMENT 

The author would like to deeply thank Mr. Dr. Ir. Rinaldi 

Munir, M.T., and Mr. Monterico Adrian, S.T., M.T. as the 

author’s lecturers of Discrete Mathematics, and by extension, 

the entire Discrete Mathematics staff, consisting of lecturers and 

assistants, for giving the author a chance to not only deepen their 

knowledge of the field, but to conduct this study as well. Lastly, 

but certainly not least, the author would like to thank their 

friends and families, for always giving them support and always 

being present while going through every hardship experienced 

in the process of conducting their study as well as writing this 

academic paper. 

 

REFERENCES 

[1] Rosen, Kenneth. (2012). Discrete Mathemathics and its Applications, 

Seventh Edition. McGraw-Hill International. 

[2] Trees in Data Structure. Programiz, 
https://www.programiz.com/dsa/trees. Accessed 8 December 2023, 10:22 

PM. 

[3] Stallings, W. (2013). Operating Systems: Internals and Design Principles, 
Seventh Edition. Pearson Education Limited. 

[4] Priority Queue. Programiz, https://www.programiz.com/dsa/priority-

queue. Accessed 9 December 2023, 6:20 AM. 
[5] Heap Data Structure. GeeksForGeeks, 

https://www.geeksforgeeks.org/heap-data-structure. Accessed 9 December 

2023, 6:20 AM. 

[6] Binary Tree. Programiz, https://www.programiz.com/dsa/binary-tree. 

Accessed 9 December 2023, 6:58 AM. 

[7] Wengrow, J. (2017). A Common-Sense Guide to Data Structures and 
Algorithms: Level Up Your Core Programming Skills. 

[8] Priority Scheduling Algorithm. Prepinsta, https://prepinsta.com/operating-

systems/priority-scheduling-algorithm/. Accessed 10 December 2023, 
6:46 PM. 

 

STATEMENT 

I hereby declare that this paper I have written is my own work, 

not a translation or adaptation of someone else's paper, and is 

not plagiarized. 

 

Bandung, December 10th, 2023  

 

 
 

Muhammad Rasheed Qais Tandjung 

13522158 

https://github.com/trimonuter/CPU-Sim
https://www.programiz.com/dsa/trees
https://www.programiz.com/dsa/priority-queue
https://www.programiz.com/dsa/priority-queue
https://www.geeksforgeeks.org/heap-data-structure
https://www.programiz.com/dsa/binary-tree
https://prepinsta.com/operating-systems/priority-scheduling-algorithm/
https://prepinsta.com/operating-systems/priority-scheduling-algorithm/

	I.   Introduction
	II.  Theoretical Framework
	A. Trees
	B. Rooted Trees
	C. Binary Heaps
	D. CPU Scheduling

	III.   Methodology
	A. Limitations
	B. Tools
	C. The Process Class
	D. The Priority Queue
	E. The CPU Scheduling Simulator

	IV.   Results and analysis
	A. Brute-forcing N Values
	B. CPU Scheduling Performance

	V.   Conclusion
	VI.   Appendix
	VII.   Acknowledgment
	References
	STATEMENT

