Optimizing CPU Process Scheduling in Operating
Systems: Utilizing Binary Trees as Min Heaps in the
Priority Scheduling Algorithm

Muhammad Rasheed Qais Tandjung - 13522158
Department of Informatics Engineering
School of Electrical Engineering and Informatics
Bandung Institute of Technology, JI. Ganesha 10 Bandung 40132, Indonesia
13522158@std.stei.itb.ac.id

Abstract—CPU scheduling is a core component in operating
systems, in which a scheduling algorithm is used to determine the
process to be executed next in a queue. The priority scheduling
algorithm is an example of such algorithm that uses priority queues
to determine the next executed process. As opposed to the
traditional use of a linear priority queue for this algorithm, this
paper proposes the use of min-heaps, a type of priority queue
implemented as a binary tree. With the utilization of binary trees,
the time complexity of insertion and deletion to the queue can be
heavily reduced from linear time to logarithmic time, thus
maximizing CPU performance.

Keywords—Binary Trees, CPU Scheduling, Data Structures,
Heaps, Priority Queues

I. INTRODUCTION

Long-term Timeout

scheduling

Batch Ready queue Short-term I Release

obe e scheduling
‘ I |] ‘ I I l ‘ l | l)_—>Prm‘c~\m
I | —

Medium-term
! scheduling

Interactive
users

|
4 Ready, suspend queue
1

~
Medium-term

scheduling
’

Blocked, suspend queue

»

Blocked queue

Event Event wait
occurs L——|

Figure 1.1 An illustrated overview of CPU scheduling.
Source: [3]

In the realm of operating systems, the efficient allocation of
CPU resources is vital to ensure optimal system performance.
The CPU, following its name, is the central location for
executing every process given by the operating system.
However, its ability to handle tasks concurrently is limited by
the number of physical cores it possesses.

Despite this limitation, however, in reality the usual amount
of processes needing to be executed at a certain moment far
exceeds the capacity that the CPU can handle. Therefore, to
counteract this problem, the operating system implements what
is called process scheduling to determine which processes
should be executed first.

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2023/2024

Process scheduling refers to the mechanism through which
the operating system manages the execution of multiple
processes. When numerous processes are queueing for CPU
time, the scheduler determines the order in which these
processes are executed, aiming to maximize CPU utilization,
minimize response time, and enhance overall system
throughput.

At its core, process scheduling involves various algorithms
that dictate how the CPU selects the next process to execute
from the ready queue. One of these algorithms, aptly called
priority scheduling, operates on the principle of assigning
priorities to different processes based on specific criteria.
Processes with higher priority are granted access to the CPU
before those with lower priority.

These processes are stored in a data structure called priority
queues, where the processes in front of the queue gets executed
first, and when more processes get added, they are inserted to
the back of the queue. Processes with higher priority will be
pushed front to its appropriate location in the queue by the
operating system.

Element with the Dequeue

highest priority

Enqueue

Figure 1.2 A traditional linear priority queue. These data structures suffer
from O(n) insertion time.
Source: [4]

Traditionally, priority queues have been implemented using
linear data structures such as linked lists or arrays. However,
these structures suffer from limitations in terms of efficiency
and scalability. As the number of processes increases, searching
for the highest-priority process becomes computationally
expensive, hindering overall system performance.

To address these limitations, this paper proposes the

utilization of binary trees as heaps in the implementation of the
priority scheduling algorithm. Heaps offer a compelling
alternative due to their inherent properties: they guarantee
efficient insertion, deletion, and retrieval of the highest-priority
element, all with a logarithmic time complexity. This
significantly improves the efficiency of the scheduling process,
particularly for large and dynamic workloads.

) (0) @0 (@) (10 (15 (o) (a0

Figure 1.3 The heap data structure improves on linear data structures by
having O(log n) time operations.
Source: [5]

II. THEORETICAL FRAMEWORK

A. Trees

In graph theory, trees represent a specific class of graphs
characterized by unique properties that make them invaluable
for modeling and analyzing various real-world phenomena.

The concept of a tree is inherently intuitive. It evokes images
of branching structures, with a single root node connected to
multiple child nodes, which can further branch out to form
subsequent levels. This hierarchical organization allows for
efficient traversal and navigation, making trees ideal for
representing hierarchical relationships and data structures.

Formalizing the intuitive notion of a tree requires precise
mathematical language. A tree can be defined as a connected,
acyclic, and undirected graph [1]. This definition captures
several key properties:

1. Connected: All nodes in the tree are reachable from every
other node via a sequence of edges. This interconnectedness
ensures that the tree functions as a single cohesive unit.

2. Acyclic: The tree does not contain any cycles. This means
that traversing the edges in any direction will not lead you back
to the same node you started from. Acyclicity prevents infinite
loops and guarantees a well-defined structure.

3. Undirected: The edges in a tree have no inherent direction.
This means that the relationship between nodes is symmetrical,
and you can traverse the edges in either direction without
changing the meaning of the connection.

These three conditions are sufficient to characterize a

mathematical tree. Figure 2.1 illustrates the distinction between
trees and regular graphs (non-trees).

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2023/2024

a
o
.

G

Figure 2.1 lllustration of trees and non-trees
Source: [1]

Graphs G; and Gy in Figure 2.1 fit the criteria of being
connected, acyclic, and undirected, and therefore can be
considered trees. Graph Gs cannot be classified as a tree, since
there exists a circuit a-b-e-d-a in the graph, violating the acyclic
criteria of trees. Graph G is not a tree either, since it consists of
two unconnected graphs.

The distinction between trees and graphs consist purely of the
three criteria previously mentioned. In practice, however, it is
much more common for a different type of tree to be used
instead. These trees are called rooted trees, and applications of
trees in various fields see far more use of this type of tree instead
of the mathematical tree described above.

B. Rooted Trees

Rooted trees are a specific subclass of trees characterized by
a unique root node. This root serves as the starting point for
navigating the entire tree structure.

Unlike other trees, where all nodes are treated equally, rooted
trees establish a clear hierarchy and directionality. This inherent
organization facilitates efficient searching, data retrieval, and
manipulation, making them invaluable tools for representing
complex systems and data sets.

Formally, a rooted tree can be defined as a connected, acyclic,
and directed graph with the following properties:

1. Connected: All nodes in the tree are reachable from every
other node via a sequence of edges. This interconnectedness
ensures that the tree functions as a single cohesive unit.

2. Acyclic: The tree does not contain any cycles. This means
that traversing the edges in any direction will not lead you back
to the same node you started from. Acyclicity prevents infinite
loops and guarantees a well-defined structure.

3. Directed: Each edge in the tree has a specific direction,
pointing from a parent node to a child node. This directionality
establishes a clear hierarchy and allows for efficient navigation
through the tree structure.

4. Unique Root: There exists a single node, designated as the
root, with no incoming edges. This node serves as the starting
point for traversing the entire tree.

With the addition of direction and hierarchy in rooted trees,
several new terminologies are introduced to describe trees, the
nodes inside trees, and relations between nodes inside the tree:

Parent: A node connected to a child node by a single directed
edge.

Child: A node connected to a parent node by a single directed
edge.

Siblings: Nodes that share the same parent node.

Root: The node at the topmost of the tree with no parent node.

Degree: The number of outgoing edges connected to a node.

Level: The depth of a node in the tree, with the root being at
level 0.

Subtree: A rooted tree formed by a node and all its
descendants.

Depth: The length of the longest path from a node to the root
node.

Figure 2.2 Illustration of a rooted tree, with node (1) as its root, and the
subtrees (2) and (3) as its children.
Source: [2]

With a wide range of applications for the rooted tree data
structure, many seek to invent further derivations of this
concept, with some seeing even more uses in various problems
spanning all sorts of fields.

One such derivation is the N-ary tree, where each node can
only have a maximum of N children, however having less
children is still allowed. While this type of tree can still see
various use cases, by far the most significant role of the N-ary
tree in the realm of data structures is not the N-ary tree itself, but
yet another derivation of the N-ary tree, also known as the
binary tree.

Figure 2.3 The binary tree, one of the most important data structures in
computer science.
Source: [6]

The binary tree is a special type of N-ary tree where each node
can have a maximum of two children. While this choice of

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2023/2024

restriction seems oddly arbitrary, the binary tree is a structure
that surprisingly has an extraordinary amount of applications,
especially in the computer science field. Some of its main uses
include, but not limited to: binary search trees (BSTs) for
efficient storing of sorted data, Huffman coding for data
compression, and the main topic of this paper, the binary heap.

e

® J ©

Figure 2.4 Illustration of a max-heap
Source: [7]

C. Binary Heaps

OLN
CRaR

A binary heap is a specific kind of binary tree that satisfies
two conditions [7]:

1. The binary tree is nearly complete, which means empty
nodes are only in the lowest layer, and the insertion is
always to the leftmost empty slot.

2. Every node in the tree is always (1) less than, or (2)
greater than both of its children. A heap that satisfies
condition (1) is called a min-heap, while a heap that
satisfies condition (2) is called a max-heap.

Unlike other tree data structures, the heap doesn’t support
searching or random deletion, and its main operations are delete
root and insertion, making it quite similar to the queue.

To insert into a node into the heap, we first insert it to the
leftmost node in the bottom layer, and “bubble up” the node to
its correct position. To delete the root from the tree, we first
swap the root with the last node in the lowest layer, delete the
last node, and then the current root (which was previously the
last node) is “bubbled down” to its correct position.

Ordered Array Heap
Insertion O(N) O(log N)
Deletion 0(1) O(log N)

Figure 2.5 Time complexity comparison of ordered array versus heaps
Source: [7]

This makes the steps in insertion and deletion always less than
or equal to the root height (log n). Another unique characteristic
of the heap is that the root is always either the maximum or the
minimum value of the entire tree. If we imagine the numbers
stored in a heap as a “priority value”, then the root node will
always store the node with maximum priority. These two
characteristics of the heap is the reason why it is an excellent
choice to be used as a priority queue.

D. CPU Scheduling

CPU scheduling is a pivotal aspect of operating systems,
playing a fundamental role in optimizing the utilization of the
CPU and enhancing overall system performance. It
encompasses the methodology by which the system selects and
allocates available CPU resources to various processes. Through
the intricate orchestration of competing demands and priorities
among multiple processes, CPU scheduling seeks to achieve
optimal throughput, minimize response times, and ensure fair
access to system resources, thereby contributing significantly to
the seamless functioning of computing systems.

0 3 7 n 13 18 27 37

P1 P3 P6 P4 P2 P5 P7

>

TIME

Process P1 P2 |P3 | P4 |P5 ©P6 | P7
Burst Time 3 5 4 2 9 4 110
Priority 3 6 3 5 7 4 110

2 1‘4‘6‘5‘7

Arrival Time 0

Figure 2.6 An illustration of the priority scheduling algorithm
Source: [8]

The choice of which process gets to be executed next is
usually decided by a CPU scheduling algorithm, of which there
are many with their own benefits and downfalls. Some of the
common scheduling algorithms include [3]:

1. First Come First Served (FCFS): AIll processes are
treated equally, and the earliest-arriving process is
always next to be executed.

2. Shortest Job First (SJF): The next executed process is
the one with the shortest execution time, therefore
minimizing average wait times and maximizing
processes finished per second.

3. Priority Scheduling: Each process is given a priority
value, and the lower-priority processes get pushed to the
front of the queue.

4. Round Robin (RR): A pre-emptive algorithm where each
process gets executed for a certain amount of time, and if
it is not finished yet after that the duration has passed, it
will be dequeued and then pushed back to the tail of the
queue to be finished later.

These scheduling algorithms can be classified into non-
preemptive and preemptive algorithms. Non-preemptive
algorithms are ones that require an executing process to be fully
finished before moving on to the next process, while preemptive
algorithms can partially execute a process and move to the next
process, finishing the previous one at a later time.

The round robin algorithm is an example of a preemptive
algorithm, while the rest that has been mentioned fall under the
non-preemptive category.

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2023/2024

III. METHODOLOGY

A. Limitations

With the theoretical frameworks of a binary heap and CPU
scheduling established, this paper will now attempt to simulate
CPU scheduling in Python. Simulating the inner workings of a
CPU and the operating system is no easy task, therefore the
method of simulation going forward will follow these few
assumptions:

1. The simulated system is a uniprocessor system, therefore
all processes will be queued and executed by the single
processor.

2. The simulation will be non-dynamic, which means it
cannot simulate processes queueing in and the process
being executed simultaneously. Instead, the simulation
will be divided into two phases, the queueing in phase,
and the execution phase.

3. The simulation will only simulate non-preemptive
algorithms, therefore each process will have to be fully
completed before the CPU executes the next process in
queue.

With these assumptions applied, the result of this paper might
not reflect the results of real CPU scheduling, but it would still
bring into light the benefits of the heap-based data structure and
an overview of its effects on optimizing the scheduling process.

B. Tools

The tools that will be used for this simulation include:
1. Python 3.10
2. The heapq built-in library in Python for heap queue
operations
3. Jupyter Notebook, pandas, and matplotlib for data
analysis and visualization

C. The Process Class

The main function of the proposed program is to simulate the
sorting of processes in the scheduling queue. Therefore, a
Process class needs to be defined first. This process class will
serve as the main element type that will be inserted and sorted
inside the queue. Figure 3.1 shows the structure of the Process
class that will be used in the program.

e Processpy X

> %2 Process > @ _init__
Process:

e Process

__init_ (self, name, priority, burst):
self.name = name

self._priority = priority
self.burstTime = burst
self.arrivalTime = 0|

Figure 3.1 The Process class that represents the processes to be executed by
the CPU
Source: Personal documentation

The Process class, upon initialization, will be given a process
name (for identification purposes only), a priority value (lower
priority processes will be executed first by the CPU, and a burst

time (the time it takes the CPU to execute the process). An
arrival time will also be automatically initialized to 0, but will
later be replaced with the time the process arrives in the
scheduling queue.

D. The Priority Queue

Aside from needing a Process class, the program obviously
also needs a Priority Queue class to store and sort the processes
for execution. In this simulation, we will be implementing both
the heap-based priority queue and the array-based priority
queue. This is such that we can compare the efficiencies of both
implementations.

For the implementation of the heap-based priority queue, we
will be utilizing the built-in heapq library with pre-made binary
heap operations. Every implementation of a min-heap is
essentially the same no matter the context, and since in this
implementation we are more concerned with the benefits of a
min-heap implementation in CPU scheduling instead of the min-
heap itself, a manually-made heap data structure is not required.

Priority e:
__init_ (self):
self.heap = []
self.count = @

Push(self, item:P :
heapq.heappush(self.heap, (item.priority, self.count, item))

self.count += 1

Pop(self):
return heapq.heappop(self.heap)[-1]

IsEmpty(self):
return len(self.heap)

= self.queue[j], self.queue[i]

GetPriority (s
f.swap(pos, pos - 1)

elf.queue[pos]) < GetPriority(self.queue[pos - 1

ef Pop(self):
if self.IsEmpty():
n self.queue.pop(@)

IsEmpty()
rn len(self.queue) == @

(b)
Figure 3.2 (a) The Heap-based Priority Queue, (b) The Array-Based Priority
Queue
Source: Personal documentation

Figure 3.2 shows the source code for both priority queue
implementations. These implementations are functionally the
same, behaving as a data structure where deletion is always from
the front of the queue, and insertion starts from the back and then
shifted to its appropriate location based on priority.

The main difference between both structures are the
algorithms used to execute said operations. In the heap-based
implementation, inserting to the correct position is always in
O(log n) time, since the maximum amount of swaps required is

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2023/2024

the height of the binary tree. The array-based implementation,
in contrast, might have to swap with every element in the queue
in the worst-case scenario, therefore having O(n) insertion time.

E. The CPU Scheduling Simulator

With the needed data types and data structures already
implemented, we are now ready to implement the CPU
scheduling program. A brief overview of the flow of the
program is as follows:

1. The inner program will simulate the CPU Priority
Scheduling Algorithm for both the heap-based and array-
based priority queue, for a finite N amount of processes.

2. The outer program receives a number Nmin, Nmax, and K,
and for each value N; + K in the range [Nmin, Nmax]
(inclusive), the outer program will run the inner program
with N = N; amount of processes.

3. Foreach iteration of the inner program, the result is saved
into a .csv file.

Further details of the program flow as well as the source code

of the program is as follows:

180
500000
filename =

maxPrio =
nMax =
'bruteforce-heap.csv'

with open(filename,

‘'w') as file:

Figure 3.3 Program initialization
Source: Personal documentation

1. The program will first set a max priority value, Nmax, and
the filename to store the results. The file is then opened,
and every line of code after this is executed inside the
with block.

for n in range(5@@e, nMax + 1, 5eee):
processes: [Process] = [Process(
randrange(1, maxPrio), 8) for i in range(1, n + 1)]
data = {}
start = time()

"Process_{i}"',

pgHeap = PriorityQueue()

Figure 3.4 Starting the loop
Source: Personal documentation

2. The outer program starts a for loop for each N; + K in the
range [Nmin, Nmax]. In the example in Figure 3.4, Npin =
5000, and K = 5000.

3. The inner program starts by initializing a list of N
processes, and a data dictionary that will be used to store
time values such as arrival time.

4. The start time of the iteration is stored in the start
variable, and the priority queue is initialized.

for p in processes:
pgHeap.Push(p)

arrivalTime = time() - start

data[p.name] = arrivalTime

CPUstart = time()
process = ©
waitingTime =
totalBurst = @

while pgHeap . IsEmpty():

p: Process = pgHeap.Pop()

process += 1

currTime = (time() - start) + p.burstTime

totalBurst += p.burstTime

p.arrivalTime = data[p.name]

waitingTime += (currTime - p.arrivalTime - p.burstTime)

Figure 3.5 The process of filling the queue, and then emptying the queue
Source: Personal documentation

5. Each process in the processes list will now be inserted to
the priority queue. This is the main section that is affected
by the choice of the priority queue data structure.

6. After every process has been inserted to the queue, the
CPU will “execute” each process, starting with the
highest priority process, until the queue is empty. In the
process, it will keep track of the total burst time and
waiting time, for calculations later.

timeTaken = (time()

- start) + totalBurst

CPUutil = ((timeTaken - (CPUstart - start)) / timeTaken) * 1@e

throughput = process / timeTaken

avgWaitingTime = waitingTime / process

Figure 3.6 Ending the iteration and calculating results
Source: Personal documentation

7. After steps 5 and 6 are finished, the simulation for the
specific iteration is done, the statistics of CPU
performance is calculated, and the results are saved to the
.csv file.

8. The program then loops back to step 4, starting another
iteration.

IV. RESULTS AND ANALYSIS

We will begin the experimentation process by defining the
case studies that will be experimented and analyzed in this
paper:

1. Brute-forcing N Values
2. CPU Scheduling Performance

In the first case study, we are only concerned with the time
taken for the simulator to queue and execute N processes,
therefore CPU-specific values such as burst time, throughput,
etc. will be ignored. In the other case studies, however, we will

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2023/2024

be further analyzing how the algorithm effects these CPU-
specific values.

A. Brute-forcing N Values

In this case study, we will brute force N values as high as
possible and analyze the times taken for both priority queue
implementations. Because we are only concerned with the speed
of the simulation, the only variable we will be analyzing is the
total time taken to queue and execute N processes.

Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
Time =
, Time =

Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished

sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
©.32 sec

Figure 4.1 Terminal output of program while running
Source: Personal documentation

Figure 4.1 shows the output of the program to the terminal
during execution. After one iteration is finished, the N value of
the iteration and the total time taken for the iteration (in seconds)
is displayed.

Finished
Finished
Finished
Finished
Finished
Finished

Finished
Finished
Finished
Finished
Finished

Finished
Finished
Finished
Finished
Finished
Finished

Finished
Finished
Finished
Finished
Finished

00 0000000000 d®
Ggg@@@@@@@@
un W wWwwwNnRNRNRN

Figure 4.2 Terminal output results for higher N values, (a) Results for the
array-based priority queue implementation, (b) Results for the heap-based
priority queue implementation

Figure 4.2 shows the simulation results for higher N values.
From first glance, it is glaringly obvious how high the array-
based priority queue spikes in execution time for higher N
values. Indeed, by plotting the execution time for both
implementations in a line graph, we can see the astronomical
rise of the array-based simulation.

Total Execution Time for N Processes

== Heap
=—_= Array

= =]
o un (=)

Execution time (seconds)
w

2,000 4,000 6,000 8,000 10,000 12,000 14,000
Amount of queueing processes

Figure 4.3 The rise of execution time for the array-based simulation
Source: Personal documentation

Figure 4.3 shows the graph of total execution time in respect
to N processes for both simulations. How to interpret this graph
is: If the CPU has to queue and execute around 12,000 processes,
the array-based simulation would finish executing all processes
in around 15 seconds, while the heap-based simulation would
finish in near O seconds.

A first thought might be that, while there’s an obvious spike
in execution time for the array-based simulation, the difference
seems negligible, only differing about 20 seconds However, the
graph in Figure 4.3 is not the full picture, or more precisely, it’s
only 37.5% of the full picture.

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2023/2024

Total Execution Time for N Processes

175 ™= Heap
=s= Array
150

125

100

%4 ~
o 8]

Execution time (seconds)
N
w

o

0 10,000 20,000 30,000 40,000
Amount of queueing processes

Figure 4.4 The full plotted graph of the experiment
Source: Personal documentation

50,000

Figure 4.4 shows the plotting data for the entire result of both
simulations. As you can see, the array graph spikes so high up
in seconds resulting in the y-axis being so stretched out in scale,
thus causing the heap graph to look flat in comparison.

The author has chosen to show the incomplete graph first to
showcase that both graphs are indeed increasing, but for much
bigger N sizes, the array-based priority queue spikes much
quicker in execution time than the heap-based queue.

B. CPU Scheduling Performance

In this section, we will be analyzing how a change from a
linear priority queue to a binary heap priority queue affects CPU
scheduling performance. There are many criteria to dictate the
quality of a CPU scheduler, but the ones of interest to us in this
simulation are as follows:

1. CPU Utilization: The percentage of time where the CPU

is executing processes. A CPU is said to have 100%
utilization if it is executing a process in every single
moment.

2. Throughput: The amount of processes being finished
every second.

3. Average Waiting Time: The average time a process has
to wait in queue. That is, for each process, the waiting
time is the duration from which it enters the queue, to
when it is finally executed by the CPU.

In the previous section we have ignored these criteria as well
as other units such as burst rate, which before we have initialized
as 0 to make computation easier. However, we will be
introducing burst times to each process in this section, therefore
a process will not be finished in an instant, it will take exactly B
seconds to finish once it has been started executing by the CPU,
where B is the burst time of that process

With burst times being introduced, computation times will
increase, since each process are not finished instantly.
Therefore, for this experiment, we have decreased Nmin to 1000,
Nmax to 30000, and K to 1000.

$ python CPU-Sim.py
bruteforce-heap.csv
Finished
Finished
Finished
Finished

A CPUuUtil =
>
2
>
Finished ,
>
2
>
2

CPUutil
CPUutil
CPUuUtil
CPUutil
CPUuUtil
CPUutil

Time
Time
Time
Time
Time
Time
Time

.56 sec,
.12 sec,
.64 sec,
.19 sec,
.77 sec,
.31 sec,
.98 sec,
Time .41 sec, CPUutil .86%,

Time .99 sec, CPUutil = 99.84%,

Time = 5.55 sec, CPUutil = 99.86%,

.82%,
.91%,
.94%,
.91%,
.89%,
.88%,
.88%,

Finished
Finished
Finished
Finished
Finished ,

APPRPWWNNRRO

@

throughput
throughput
throughput
throughput
throughput
throughput
throughput

1833 processes/sec,
1835 processes/sec,
1806 processes/sec,
1813 processes/sec,
1802 processes/sec,
1889 processes/sec,
1793 processes/sec,
throughput = 1805 processes/sec, avghWait = sec
throughput = 1811 processes/sec, avghWait = @. sec

throughput = 1820 processes/sec, avgWait = ©.81 sec

(b)
Figure 4.5 The new format of terminal output, with added values

Source: Personal documentation

avghWait
avghWait
avghWait
avghWait
avghWait
avghait
avgWait

sec
sec
sec
sec
sec
sec
sec

(]

[=gr=1

00000000 @
=

QQ&&g@@QQ

=

Total Execution Time for N Processes

120 7 g Heap

= Array
100

80
60
40

20

Execution time (seconds)

0 5,000 10,000 15,000 20,000 25,000 30,000
Amount of queueing processes

Figure 4.6 The new execution time from adding burst times to processes
Source: Personal documentation

With burst times now being implemented, total execution
time have increased a significant amount, as seen on Figure 4.6.
With this newly modified simulator, though, we are able to
extract more information about CPU performance.

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2023/2024

CPU Utilization for N Processes

100%

e 80%

c

=)

T 60%

N

E

=)

o 40%

[

@]

% == Heap

=—m= Array
0 5,000 10,000 15,000 20,000 25,000 30,000

Amount of queueing processes

Figure 4.7 CPU Utilization Graph
Source: Personal documentation

CPU utilization refers to the ratio of time where the CPU is
executing processes to the total recorded time. If a CPU has near
100% utilization, it means that it is almost never idle and is
executing processes at any given moment.

In this simulation, all processes need to be already in the
queue before the CPU starts executing them. In the case of the
heap-based simulation, it finishes the queue insertion part
almost instantly, and therefore has near 100% CPU utilization.

The array-based simulation, however, is already at 80%
utilization even at N = 1000 processes queueing. This number
rapidly declines until going under 20% at around 20,000
processes.

The rapid decline in utilization is because the array-based
simulation spends a very long time inserting processes into the
queue. At N = 20,000 processes, the CPU is almost 80% idle at
any given moment, simply waiting for the queue to be finished
sorting.

CPU Throughput for N Processes

1800 * o v e

1600
1400
1200
1000

800

600

400 === Heap
== Array

Throughput (Processes / second)

200
0 5,000 10,000 15,000 20,000 25,000 30,000

Amount of queueing processes

Figure 4.8 CPU Throughput Graph
Source: Personal documentation

CPU throughput refers to the amount of processes being
finished every second (processes / sec). If a CPU has high
throughput, it means that it is has rapid speed in finishing
processes.

Using our simulation, there shouldn’t be much difference
between execution speed between both array-queue and heap-
queue, since deletion in the queue is very fast for both.

What makes the array simulation steadily declining, though,

is simply attributed to the extended time inserting into the queue.
When processes are being inserted to the queue, the CPU is idle
and therefore not finishing any tasks. This is why the graph for
throughput follow a similar decline as with the CPU utilization
graph.

Average Waiting Time for N Processes

70 == Heap
= Array

Waiting Time (sec)
[) w =y wu [=)]
o Q o o o o

o

0 5,000 10,000 15,000 20,000 25,000 30,000
Amount of queueing processes

Figure 4.9 Average Waiting Time Graph
Source: Personal documentation

For the last scheduling criteria, we have average waiting time.
The waiting time of a process refers to the duration it has to wait
in the queue before being executed. If a scheduler has low
average waiting times, it means that a process usually gets
executed very quickly after entering the queue.

This graph almost looks like an inverse of the two graphs
previously discussed, and the reasoning for this is pretty much
the same. Because the insertion phase takes very long in the
array-based simulation, the execution phase starts even longer
as well, thus for the processes in the queue, a lot of time is spent
simply waiting for the insertion phase to finish before actual
execution occurs.

V. CONCLUSION

From the results of the CPU scheduling simulator, it is
evidently clear how using binary trees instead of linear arrays as
priority queues significantly improve the efficiency of process
scheduling. This case study shows a classic example of the vast
difference a simple data structure change can make to a certain
process.

This study has shown that the concept of the mathematical
tree in discrete mathematics, while simple, can bring huge
benefits to real life problems. A data structure for a process
scheduling program is simply one of many. Therefore, the
author kindly invites the reader to also find interesting and
innovative applications of discrete mathematics concepts in
other problems, and write a paper of analysis discussing it,
inviting others to do the same.

As for the technicalities of this experiment, the author
recognizes that it is far from perfect, and has large rooms for
improvement. An example of imperfection in this
implementation is the huge distinction of the simulated CPU to
real-life CPUs. If given opportunities in the future, the author

Makalah IF2120 Matematika Diskrit — Sem. | Tahun 2023/2024

would like to improve this experiment to better reflect and
simulate the real-life problem.

VI. APPENDIX

The complete source code for this project can be found at this
repository: https://github.com/trimonuter/CPU-Sim

VII. ACKNOWLEDGMENT

The author would like to deeply thank Mr. Dr. Ir. Rinaldi
Munir, M.T., and Mr. Monterico Adrian, S.T., M.T. as the
author’s lecturers of Discrete Mathematics, and by extension,
the entire Discrete Mathematics staff, consisting of lecturers and
assistants, for giving the author a chance to not only deepen their
knowledge of the field, but to conduct this study as well. Lastly,
but certainly not least, the author would like to thank their
friends and families, for always giving them support and always
being present while going through every hardship experienced
in the process of conducting their study as well as writing this
academic paper.

REFERENCES

[1] Rosen, Kenneth. (2012). Discrete Mathemathics and its Applications,
Seventh Edition. McGraw-Hill International.

[2] Trees in Data Structure. Programiz,
https://www.programiz.com/dsa/trees. Accessed 8 December 2023, 10:22
PM.

[3] Stallings, W. (2013). Operating Systems: Internals and Design Principles,
Seventh Edition. Pearson Education Limited.

[4] Priority Queue. Programiz, https://www.programiz.com/dsa/priority-

queue. Accessed 9 December 2023, 6:20 AM.

[5] Heap Data Structure.

https://www.geeksforgeeks.org/heap-data-structure.

2023, 6:20 AM.

[6] Binary Tree. Programiz, https://www.programiz.com/dsa/binary-tree.
Accessed 9 December 2023, 6:58 AM.

[7] Wengrow, J. (2017). A Common-Sense Guide to Data Structures and
Algorithms: Level Up Your Core Programming Skills.

[8] Priority Scheduling Algorithm. Prepinsta, https://prepinsta.com/operating-
systems/priority-scheduling-algorithm/. Accessed 10 December 2023,
6:46 PM.

GeeksForGeeks,
Accessed 9 December

STATEMENT

I hereby declare that this paper I have written is my own work,
not a translation or adaptation of someone else's paper, and is
not plagiarized.

Bandung, December 10", 2023

Muhammad Rasheed Qais Tandjung
13522158

https://github.com/trimonuter/CPU-Sim
https://www.programiz.com/dsa/trees
https://www.programiz.com/dsa/priority-queue
https://www.programiz.com/dsa/priority-queue
https://www.geeksforgeeks.org/heap-data-structure
https://www.programiz.com/dsa/binary-tree
https://prepinsta.com/operating-systems/priority-scheduling-algorithm/
https://prepinsta.com/operating-systems/priority-scheduling-algorithm/

	I. Introduction
	II. Theoretical Framework
	A. Trees
	B. Rooted Trees
	C. Binary Heaps
	D. CPU Scheduling

	III. Methodology
	A. Limitations
	B. Tools
	C. The Process Class
	D. The Priority Queue
	E. The CPU Scheduling Simulator

	IV. Results and analysis
	A. Brute-forcing N Values
	B. CPU Scheduling Performance

	V. Conclusion
	VI. Appendix
	VII. Acknowledgment
	References
	STATEMENT

