
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Optimizing CPU Process Scheduling in Operating

Systems: Utilizing Binary Trees as Min Heaps in the

Priority Scheduling Algorithm

Muhammad Rasheed Qais Tandjung - 13522158

Department of Informatics Engineering

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132, Indonesia

13522158@std.stei.itb.ac.id

Abstract—CPU scheduling is a core component in operating

systems, in which a scheduling algorithm is used to determine the

process to be executed next in a queue. The priority scheduling

algorithm is an example of such algorithm that uses priority queues

to determine the next executed process. As opposed to the

traditional use of a linear priority queue for this algorithm, this

paper proposes the use of min-heaps, a type of priority queue

implemented as a binary tree. With the utilization of binary trees,

the time complexity of insertion and deletion to the queue can be

heavily reduced from linear time to logarithmic time, thus

maximizing CPU performance.

Keywords—Binary Trees, CPU Scheduling, Data Structures,

Heaps, Priority Queues

I. INTRODUCTION

Figure 1.1 An illustrated overview of CPU scheduling.
Source: [3]

In the realm of operating systems, the efficient allocation of

CPU resources is vital to ensure optimal system performance.

The CPU, following its name, is the central location for

executing every process given by the operating system.

However, its ability to handle tasks concurrently is limited by

the number of physical cores it possesses.

Despite this limitation, however, in reality the usual amount

of processes needing to be executed at a certain moment far

exceeds the capacity that the CPU can handle. Therefore, to

counteract this problem, the operating system implements what

is called process scheduling to determine which processes

should be executed first.

Process scheduling refers to the mechanism through which

the operating system manages the execution of multiple

processes. When numerous processes are queueing for CPU

time, the scheduler determines the order in which these

processes are executed, aiming to maximize CPU utilization,

minimize response time, and enhance overall system

throughput.

At its core, process scheduling involves various algorithms

that dictate how the CPU selects the next process to execute

from the ready queue. One of these algorithms, aptly called

priority scheduling, operates on the principle of assigning

priorities to different processes based on specific criteria.

Processes with higher priority are granted access to the CPU

before those with lower priority.

These processes are stored in a data structure called priority

queues, where the processes in front of the queue gets executed

first, and when more processes get added, they are inserted to

the back of the queue. Processes with higher priority will be

pushed front to its appropriate location in the queue by the

operating system.

Figure 1.2 A traditional linear priority queue. These data structures suffer

from O(n) insertion time.

Source: [4]

Traditionally, priority queues have been implemented using

linear data structures such as linked lists or arrays. However,

these structures suffer from limitations in terms of efficiency

and scalability. As the number of processes increases, searching

for the highest-priority process becomes computationally

expensive, hindering overall system performance.

To address these limitations, this paper proposes the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

utilization of binary trees as heaps in the implementation of the

priority scheduling algorithm. Heaps offer a compelling

alternative due to their inherent properties: they guarantee

efficient insertion, deletion, and retrieval of the highest-priority

element, all with a logarithmic time complexity. This

significantly improves the efficiency of the scheduling process,

particularly for large and dynamic workloads.

Figure 1.3 The heap data structure improves on linear data structures by

having O(log n) time operations.

Source: [5]

II. THEORETICAL FRAMEWORK

A. Trees

In graph theory, trees represent a specific class of graphs

characterized by unique properties that make them invaluable

for modeling and analyzing various real-world phenomena.

The concept of a tree is inherently intuitive. It evokes images

of branching structures, with a single root node connected to

multiple child nodes, which can further branch out to form

subsequent levels. This hierarchical organization allows for

efficient traversal and navigation, making trees ideal for

representing hierarchical relationships and data structures.

Formalizing the intuitive notion of a tree requires precise

mathematical language. A tree can be defined as a connected,

acyclic, and undirected graph [1]. This definition captures

several key properties:

1. Connected: All nodes in the tree are reachable from every

other node via a sequence of edges. This interconnectedness

ensures that the tree functions as a single cohesive unit.

2. Acyclic: The tree does not contain any cycles. This means

that traversing the edges in any direction will not lead you back

to the same node you started from. Acyclicity prevents infinite

loops and guarantees a well-defined structure.

3. Undirected: The edges in a tree have no inherent direction.

This means that the relationship between nodes is symmetrical,

and you can traverse the edges in either direction without

changing the meaning of the connection.

These three conditions are sufficient to characterize a

mathematical tree. Figure 2.1 illustrates the distinction between

trees and regular graphs (non-trees).

Figure 2.1 Illustration of trees and non-trees

Source: [1]

Graphs G1 and G2 in Figure 2.1 fit the criteria of being

connected, acyclic, and undirected, and therefore can be

considered trees. Graph G3 cannot be classified as a tree, since

there exists a circuit a-b-e-d-a in the graph, violating the acyclic

criteria of trees. Graph G4 is not a tree either, since it consists of

two unconnected graphs.

The distinction between trees and graphs consist purely of the

three criteria previously mentioned. In practice, however, it is

much more common for a different type of tree to be used

instead. These trees are called rooted trees, and applications of

trees in various fields see far more use of this type of tree instead

of the mathematical tree described above.

B. Rooted Trees

Rooted trees are a specific subclass of trees characterized by

a unique root node. This root serves as the starting point for

navigating the entire tree structure.

Unlike other trees, where all nodes are treated equally, rooted

trees establish a clear hierarchy and directionality. This inherent

organization facilitates efficient searching, data retrieval, and

manipulation, making them invaluable tools for representing

complex systems and data sets.

Formally, a rooted tree can be defined as a connected, acyclic,

and directed graph with the following properties:

1. Connected: All nodes in the tree are reachable from every

other node via a sequence of edges. This interconnectedness

ensures that the tree functions as a single cohesive unit.

2. Acyclic: The tree does not contain any cycles. This means

that traversing the edges in any direction will not lead you back

to the same node you started from. Acyclicity prevents infinite

loops and guarantees a well-defined structure.

3. Directed: Each edge in the tree has a specific direction,

pointing from a parent node to a child node. This directionality

establishes a clear hierarchy and allows for efficient navigation

through the tree structure.

4. Unique Root: There exists a single node, designated as the

root, with no incoming edges. This node serves as the starting

point for traversing the entire tree.

With the addition of direction and hierarchy in rooted trees,

several new terminologies are introduced to describe trees, the

nodes inside trees, and relations between nodes inside the tree:

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Parent: A node connected to a child node by a single directed

edge.

Child: A node connected to a parent node by a single directed

edge.

Siblings: Nodes that share the same parent node.

Root: The node at the topmost of the tree with no parent node.

Degree: The number of outgoing edges connected to a node.

Level: The depth of a node in the tree, with the root being at

level 0.

Subtree: A rooted tree formed by a node and all its

descendants.

Depth: The length of the longest path from a node to the root

node.

Figure 2.2 Illustration of a rooted tree, with node (1) as its root, and the

subtrees (2) and (3) as its children.

Source: [2]

With a wide range of applications for the rooted tree data

structure, many seek to invent further derivations of this

concept, with some seeing even more uses in various problems

spanning all sorts of fields.

One such derivation is the N-ary tree, where each node can

only have a maximum of N children, however having less

children is still allowed. While this type of tree can still see

various use cases, by far the most significant role of the N-ary

tree in the realm of data structures is not the N-ary tree itself, but

yet another derivation of the N-ary tree, also known as the

binary tree.

Figure 2.3 The binary tree, one of the most important data structures in

computer science.

Source: [6]

The binary tree is a special type of N-ary tree where each node

can have a maximum of two children. While this choice of

restriction seems oddly arbitrary, the binary tree is a structure

that surprisingly has an extraordinary amount of applications,

especially in the computer science field. Some of its main uses

include, but not limited to: binary search trees (BSTs) for

efficient storing of sorted data, Huffman coding for data

compression, and the main topic of this paper, the binary heap.

C. Binary Heaps

Figure 2.4 Illustration of a max-heap

Source: [7]

A binary heap is a specific kind of binary tree that satisfies

two conditions [7]:

1. The binary tree is nearly complete, which means empty

nodes are only in the lowest layer, and the insertion is

always to the leftmost empty slot.

2. Every node in the tree is always (1) less than, or (2)

greater than both of its children. A heap that satisfies

condition (1) is called a min-heap, while a heap that

satisfies condition (2) is called a max-heap.

Unlike other tree data structures, the heap doesn’t support

searching or random deletion, and its main operations are delete

root and insertion, making it quite similar to the queue.

To insert into a node into the heap, we first insert it to the

leftmost node in the bottom layer, and “bubble up” the node to

its correct position. To delete the root from the tree, we first

swap the root with the last node in the lowest layer, delete the

last node, and then the current root (which was previously the

last node) is “bubbled down” to its correct position.

Figure 2.5 Time complexity comparison of ordered array versus heaps

Source: [7]

This makes the steps in insertion and deletion always less than

or equal to the root height (log n). Another unique characteristic

of the heap is that the root is always either the maximum or the

minimum value of the entire tree. If we imagine the numbers

stored in a heap as a “priority value”, then the root node will

always store the node with maximum priority. These two

characteristics of the heap is the reason why it is an excellent

choice to be used as a priority queue.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

D. CPU Scheduling

CPU scheduling is a pivotal aspect of operating systems,

playing a fundamental role in optimizing the utilization of the

CPU and enhancing overall system performance. It

encompasses the methodology by which the system selects and

allocates available CPU resources to various processes. Through

the intricate orchestration of competing demands and priorities

among multiple processes, CPU scheduling seeks to achieve

optimal throughput, minimize response times, and ensure fair

access to system resources, thereby contributing significantly to

the seamless functioning of computing systems.

Figure 2.6 An illustration of the priority scheduling algorithm

Source: [8]

The choice of which process gets to be executed next is

usually decided by a CPU scheduling algorithm, of which there

are many with their own benefits and downfalls. Some of the

common scheduling algorithms include [3]:

1. First Come First Served (FCFS): All processes are

treated equally, and the earliest-arriving process is

always next to be executed.

2. Shortest Job First (SJF): The next executed process is

the one with the shortest execution time, therefore

minimizing average wait times and maximizing

processes finished per second.

3. Priority Scheduling: Each process is given a priority

value, and the lower-priority processes get pushed to the

front of the queue.

4. Round Robin (RR): A pre-emptive algorithm where each

process gets executed for a certain amount of time, and if

it is not finished yet after that the duration has passed, it

will be dequeued and then pushed back to the tail of the

queue to be finished later.

These scheduling algorithms can be classified into non-

preemptive and preemptive algorithms. Non-preemptive

algorithms are ones that require an executing process to be fully

finished before moving on to the next process, while preemptive

algorithms can partially execute a process and move to the next

process, finishing the previous one at a later time.

The round robin algorithm is an example of a preemptive

algorithm, while the rest that has been mentioned fall under the

non-preemptive category.

III. METHODOLOGY

A. Limitations

With the theoretical frameworks of a binary heap and CPU

scheduling established, this paper will now attempt to simulate

CPU scheduling in Python. Simulating the inner workings of a

CPU and the operating system is no easy task, therefore the

method of simulation going forward will follow these few

assumptions:

1. The simulated system is a uniprocessor system, therefore

all processes will be queued and executed by the single

processor.

2. The simulation will be non-dynamic, which means it

cannot simulate processes queueing in and the process

being executed simultaneously. Instead, the simulation

will be divided into two phases, the queueing in phase,

and the execution phase.

3. The simulation will only simulate non-preemptive

algorithms, therefore each process will have to be fully

completed before the CPU executes the next process in

queue.

With these assumptions applied, the result of this paper might

not reflect the results of real CPU scheduling, but it would still

bring into light the benefits of the heap-based data structure and

an overview of its effects on optimizing the scheduling process.

B. Tools

The tools that will be used for this simulation include:

1. Python 3.10

2. The heapq built-in library in Python for heap queue

operations

3. Jupyter Notebook, pandas, and matplotlib for data

analysis and visualization

C. The Process Class

The main function of the proposed program is to simulate the

sorting of processes in the scheduling queue. Therefore, a

Process class needs to be defined first. This process class will

serve as the main element type that will be inserted and sorted

inside the queue. Figure 3.1 shows the structure of the Process

class that will be used in the program.

Figure 3.1 The Process class that represents the processes to be executed by

the CPU

Source: Personal documentation

The Process class, upon initialization, will be given a process

name (for identification purposes only), a priority value (lower

priority processes will be executed first by the CPU, and a burst

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

time (the time it takes the CPU to execute the process). An

arrival time will also be automatically initialized to 0, but will

later be replaced with the time the process arrives in the

scheduling queue.

D. The Priority Queue

Aside from needing a Process class, the program obviously

also needs a Priority Queue class to store and sort the processes

for execution. In this simulation, we will be implementing both

the heap-based priority queue and the array-based priority

queue. This is such that we can compare the efficiencies of both

implementations.

For the implementation of the heap-based priority queue, we

will be utilizing the built-in heapq library with pre-made binary

heap operations. Every implementation of a min-heap is

essentially the same no matter the context, and since in this

implementation we are more concerned with the benefits of a

min-heap implementation in CPU scheduling instead of the min-

heap itself, a manually-made heap data structure is not required.

(a)

(b)

Figure 3.2 (a) The Heap-based Priority Queue, (b) The Array-Based Priority

Queue
Source: Personal documentation

Figure 3.2 shows the source code for both priority queue

implementations. These implementations are functionally the

same, behaving as a data structure where deletion is always from

the front of the queue, and insertion starts from the back and then

shifted to its appropriate location based on priority.

The main difference between both structures are the

algorithms used to execute said operations. In the heap-based

implementation, inserting to the correct position is always in

O(log n) time, since the maximum amount of swaps required is

the height of the binary tree. The array-based implementation,

in contrast, might have to swap with every element in the queue

in the worst-case scenario, therefore having O(n) insertion time.

E. The CPU Scheduling Simulator

With the needed data types and data structures already

implemented, we are now ready to implement the CPU

scheduling program. A brief overview of the flow of the

program is as follows:

1. The inner program will simulate the CPU Priority

Scheduling Algorithm for both the heap-based and array-

based priority queue, for a finite N amount of processes.

2. The outer program receives a number Nmin, Nmax, and K,

and for each value Ni + K in the range [Nmin, Nmax]

(inclusive), the outer program will run the inner program

with N = Ni amount of processes.

3. For each iteration of the inner program, the result is saved

into a .csv file.

Further details of the program flow as well as the source code

of the program is as follows:

Figure 3.3 Program initialization

Source: Personal documentation

1. The program will first set a max priority value, Nmax, and

the filename to store the results. The file is then opened,

and every line of code after this is executed inside the

with block.

Figure 3.4 Starting the loop

Source: Personal documentation

2. The outer program starts a for loop for each Ni + K in the

range [Nmin, Nmax]. In the example in Figure 3.4, Nmin =

5000, and K = 5000.

3. The inner program starts by initializing a list of N

processes, and a data dictionary that will be used to store

time values such as arrival time.

4. The start time of the iteration is stored in the start

variable, and the priority queue is initialized.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Figure 3.5 The process of filling the queue, and then emptying the queue

Source: Personal documentation

5. Each process in the processes list will now be inserted to

the priority queue. This is the main section that is affected

by the choice of the priority queue data structure.

6. After every process has been inserted to the queue, the

CPU will “execute” each process, starting with the

highest priority process, until the queue is empty. In the

process, it will keep track of the total burst time and

waiting time, for calculations later.

Figure 3.6 Ending the iteration and calculating results

Source: Personal documentation

7. After steps 5 and 6 are finished, the simulation for the

specific iteration is done, the statistics of CPU

performance is calculated, and the results are saved to the

.csv file.

8. The program then loops back to step 4, starting another

iteration.

IV. RESULTS AND ANALYSIS

We will begin the experimentation process by defining the

case studies that will be experimented and analyzed in this

paper:

1. Brute-forcing N Values

2. CPU Scheduling Performance

In the first case study, we are only concerned with the time

taken for the simulator to queue and execute N processes,

therefore CPU-specific values such as burst time, throughput,

etc. will be ignored. In the other case studies, however, we will

be further analyzing how the algorithm effects these CPU-

specific values.

A. Brute-forcing N Values

In this case study, we will brute force N values as high as

possible and analyze the times taken for both priority queue

implementations. Because we are only concerned with the speed

of the simulation, the only variable we will be analyzing is the

total time taken to queue and execute N processes.

Figure 4.1 Terminal output of program while running

Source: Personal documentation

Figure 4.1 shows the output of the program to the terminal

during execution. After one iteration is finished, the N value of

the iteration and the total time taken for the iteration (in seconds)

is displayed.

(a)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

(b)

Figure 4.2 Terminal output results for higher N values, (a) Results for the
array-based priority queue implementation, (b) Results for the heap-based

priority queue implementation

Figure 4.2 shows the simulation results for higher N values.

From first glance, it is glaringly obvious how high the array-

based priority queue spikes in execution time for higher N

values. Indeed, by plotting the execution time for both

implementations in a line graph, we can see the astronomical

rise of the array-based simulation.

Figure 4.3 The rise of execution time for the array-based simulation

Source: Personal documentation

Figure 4.3 shows the graph of total execution time in respect

to N processes for both simulations. How to interpret this graph

is: If the CPU has to queue and execute around 12,000 processes,

the array-based simulation would finish executing all processes

in around 15 seconds, while the heap-based simulation would

finish in near 0 seconds.

A first thought might be that, while there’s an obvious spike

in execution time for the array-based simulation, the difference

seems negligible, only differing about 20 seconds However, the

graph in Figure 4.3 is not the full picture, or more precisely, it’s

only 37.5% of the full picture.

Figure 4.4 The full plotted graph of the experiment

Source: Personal documentation

Figure 4.4 shows the plotting data for the entire result of both

simulations. As you can see, the array graph spikes so high up

in seconds resulting in the y-axis being so stretched out in scale,

thus causing the heap graph to look flat in comparison.

The author has chosen to show the incomplete graph first to

showcase that both graphs are indeed increasing, but for much

bigger N sizes, the array-based priority queue spikes much

quicker in execution time than the heap-based queue.

B. CPU Scheduling Performance

In this section, we will be analyzing how a change from a

linear priority queue to a binary heap priority queue affects CPU

scheduling performance. There are many criteria to dictate the

quality of a CPU scheduler, but the ones of interest to us in this

simulation are as follows:

1. CPU Utilization: The percentage of time where the CPU

is executing processes. A CPU is said to have 100%

utilization if it is executing a process in every single

moment.

2. Throughput: The amount of processes being finished

every second.

3. Average Waiting Time: The average time a process has

to wait in queue. That is, for each process, the waiting

time is the duration from which it enters the queue, to

when it is finally executed by the CPU.

In the previous section we have ignored these criteria as well

as other units such as burst rate, which before we have initialized

as 0 to make computation easier. However, we will be

introducing burst times to each process in this section, therefore

a process will not be finished in an instant, it will take exactly B

seconds to finish once it has been started executing by the CPU,

where B is the burst time of that process

With burst times being introduced, computation times will

increase, since each process are not finished instantly.

Therefore, for this experiment, we have decreased Nmin to 1000,

Nmax to 30000, and K to 1000.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

(a)

(b)

Figure 4.5 The new format of terminal output, with added values

Source: Personal documentation

Figure 4.6 The new execution time from adding burst times to processes

Source: Personal documentation

With burst times now being implemented, total execution

time have increased a significant amount, as seen on Figure 4.6.

With this newly modified simulator, though, we are able to

extract more information about CPU performance.

Figure 4.7 CPU Utilization Graph

Source: Personal documentation

CPU utilization refers to the ratio of time where the CPU is

executing processes to the total recorded time. If a CPU has near

100% utilization, it means that it is almost never idle and is

executing processes at any given moment.

In this simulation, all processes need to be already in the

queue before the CPU starts executing them. In the case of the

heap-based simulation, it finishes the queue insertion part

almost instantly, and therefore has near 100% CPU utilization.

The array-based simulation, however, is already at 80%

utilization even at N = 1000 processes queueing. This number

rapidly declines until going under 20% at around 20,000

processes.

The rapid decline in utilization is because the array-based

simulation spends a very long time inserting processes into the

queue. At N = 20,000 processes, the CPU is almost 80% idle at

any given moment, simply waiting for the queue to be finished

sorting.

Figure 4.8 CPU Throughput Graph

Source: Personal documentation

CPU throughput refers to the amount of processes being

finished every second (processes / sec). If a CPU has high

throughput, it means that it is has rapid speed in finishing

processes.

Using our simulation, there shouldn’t be much difference

between execution speed between both array-queue and heap-

queue, since deletion in the queue is very fast for both.

What makes the array simulation steadily declining, though,

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

is simply attributed to the extended time inserting into the queue.

When processes are being inserted to the queue, the CPU is idle

and therefore not finishing any tasks. This is why the graph for

throughput follow a similar decline as with the CPU utilization

graph.

Figure 4.9 Average Waiting Time Graph

Source: Personal documentation

For the last scheduling criteria, we have average waiting time.

The waiting time of a process refers to the duration it has to wait

in the queue before being executed. If a scheduler has low

average waiting times, it means that a process usually gets

executed very quickly after entering the queue.

This graph almost looks like an inverse of the two graphs

previously discussed, and the reasoning for this is pretty much

the same. Because the insertion phase takes very long in the

array-based simulation, the execution phase starts even longer

as well, thus for the processes in the queue, a lot of time is spent

simply waiting for the insertion phase to finish before actual

execution occurs.

V. CONCLUSION

From the results of the CPU scheduling simulator, it is

evidently clear how using binary trees instead of linear arrays as

priority queues significantly improve the efficiency of process

scheduling. This case study shows a classic example of the vast

difference a simple data structure change can make to a certain

process.

This study has shown that the concept of the mathematical

tree in discrete mathematics, while simple, can bring huge

benefits to real life problems. A data structure for a process

scheduling program is simply one of many. Therefore, the

author kindly invites the reader to also find interesting and

innovative applications of discrete mathematics concepts in

other problems, and write a paper of analysis discussing it,

inviting others to do the same.

As for the technicalities of this experiment, the author

recognizes that it is far from perfect, and has large rooms for

improvement. An example of imperfection in this

implementation is the huge distinction of the simulated CPU to

real-life CPUs. If given opportunities in the future, the author

would like to improve this experiment to better reflect and

simulate the real-life problem.

VI. APPENDIX

The complete source code for this project can be found at this

repository: https://github.com/trimonuter/CPU-Sim

VII. ACKNOWLEDGMENT

The author would like to deeply thank Mr. Dr. Ir. Rinaldi

Munir, M.T., and Mr. Monterico Adrian, S.T., M.T. as the

author’s lecturers of Discrete Mathematics, and by extension,

the entire Discrete Mathematics staff, consisting of lecturers and

assistants, for giving the author a chance to not only deepen their

knowledge of the field, but to conduct this study as well. Lastly,

but certainly not least, the author would like to thank their

friends and families, for always giving them support and always

being present while going through every hardship experienced

in the process of conducting their study as well as writing this

academic paper.

REFERENCES

[1] Rosen, Kenneth. (2012). Discrete Mathemathics and its Applications,

Seventh Edition. McGraw-Hill International.

[2] Trees in Data Structure. Programiz,
https://www.programiz.com/dsa/trees. Accessed 8 December 2023, 10:22

PM.

[3] Stallings, W. (2013). Operating Systems: Internals and Design Principles,
Seventh Edition. Pearson Education Limited.

[4] Priority Queue. Programiz, https://www.programiz.com/dsa/priority-

queue. Accessed 9 December 2023, 6:20 AM.
[5] Heap Data Structure. GeeksForGeeks,

https://www.geeksforgeeks.org/heap-data-structure. Accessed 9 December

2023, 6:20 AM.

[6] Binary Tree. Programiz, https://www.programiz.com/dsa/binary-tree.

Accessed 9 December 2023, 6:58 AM.

[7] Wengrow, J. (2017). A Common-Sense Guide to Data Structures and
Algorithms: Level Up Your Core Programming Skills.

[8] Priority Scheduling Algorithm. Prepinsta, https://prepinsta.com/operating-

systems/priority-scheduling-algorithm/. Accessed 10 December 2023,
6:46 PM.

STATEMENT

I hereby declare that this paper I have written is my own work,

not a translation or adaptation of someone else's paper, and is

not plagiarized.

Bandung, December 10th, 2023

Muhammad Rasheed Qais Tandjung

13522158

https://github.com/trimonuter/CPU-Sim
https://www.programiz.com/dsa/trees
https://www.programiz.com/dsa/priority-queue
https://www.programiz.com/dsa/priority-queue
https://www.geeksforgeeks.org/heap-data-structure
https://www.programiz.com/dsa/binary-tree
https://prepinsta.com/operating-systems/priority-scheduling-algorithm/
https://prepinsta.com/operating-systems/priority-scheduling-algorithm/

	I. Introduction
	II. Theoretical Framework
	A. Trees
	B. Rooted Trees
	C. Binary Heaps
	D. CPU Scheduling

	III. Methodology
	A. Limitations
	B. Tools
	C. The Process Class
	D. The Priority Queue
	E. The CPU Scheduling Simulator

	IV. Results and analysis
	A. Brute-forcing N Values
	B. CPU Scheduling Performance

	V. Conclusion
	VI. Appendix
	VII. Acknowledgment
	References
	STATEMENT

